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NUMERICAL SIMULATION OF TWO-DIMENSIONAL
LINEAR SYSTEMS

V. V. SERGEYEV and A. V. USACHEV

Abstract—The problem of numerical simulation is considered for continuous linear systems with constant
parameters transforming two-dimensional signals. Ways of reducing the computational complexity of the
model are demonstrated. They include rational selection of parameters in the discrete Fourier transform
used, partitioning the convolution and use of the Fourier transformation in the Hartly form. The modeling
algorithm is given for the case when the impulse response function of the system is known and the input
signal is space limited.

Numerical simulation of two-dimensional linear systems transforming spatial signals can have many
applications, specifically in computer-aided design of optical imaging and data processing systems.

A numerical model of a system must be capable of approximating with high accuracy to the
system’s continuous output, using results of sampling involved in the model. Also, a high
computational efficiency is required. The fidelity of the model may be ensured by a high sampling
rate, but this greatly enlarges the arrays of data and increases the complexity of the algorithm. On
the other hand, in reducing the cost of computations we would probably obtain coarser results.
There are certain means, however, that allow modeling without losses of accuracy.

The modeling procedure outlined below relates to two-dimensional linear systems with constant
parameters.

STATEMENT OF THE PROBLEM

The output g(x, y) of a linear system with constant parameters is the aperiodic convolution of
the input signal f(x, y) and the system impulse response function (point-spread function) h(x, y)

g(x, y) = f “ F& mhe— &, y—mdEdn, )

—

where x and y are spatial arguments of the signal.
The equivalent expression in the spatial frequency domain is

G(wx’ wy) = F(wxa wy) . H(wx’ wy)’

where G, F and H are the Fourier images of the functions g, f and h respectively, and o, and o,
are the spatial frequencies.
Suppose that the two-dimensional system is given by its frequency characteristic (transfer function)
possessing the property of radial symmetry, viz.,
H(w,, 0,)=H,(p), p=/0}+w},

and the two-dimensional input signal f(x, y) is nonzero in a rectangular field. This field is represented
by a grid of samples obtained by discretization in the coordinates with a fixed increment (spacing)
T, namely,

fmn’__f(mT, nT)9 fOI' (ma n)e[OaM—l] X [O’N_l]’
=0, otherwise.

Here, M and N are the dimensions of the meaningful part of the array of input samples.
We assume that the spacing T is sufficiently small for the effects of overlap of the spectra in the
discretization to be neglected, i.e. assume that the input-signal spectrum is band limited, viz.,

F(w,, w,)=0 for |wJ=2n/T or |wl=2n/T.
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The sample spacing T is assumed to satisfy the Nyquist theorem. Under the circumstances the
continuous convolution (1) may be replaced by its discrete analog without loss of accuracy, namely
(1],

M-1N-1
gk,l = T2 Z Z fmnhk—m,l—n’ (2)
m=0 n=0
where g, , = g(kT,IT) and h, , = h(pT, qT).

We seek the samples of the output signal in some rectangular field (k, I)e [k, k,] x [1;, ;], where
ky, k,, I, and I, are the boundaries of the output sample field in question.

A fast technique of computing the convolution (2) consists in taking three discrete Fourier
transforms (DFT), two direct transforms and one inverse [2].

In the problem in question the DFT treatment acquires a number of specific features. On the
one hand, the description of the system directly in the spatial frequency domain allows one to
eliminate one DFT procedure. On the other hand, the spread of the sampled impulse response
becomes unknown, that is, one is uncertain about the number of appreciably nonzero samples on
the positive half-axis.

ESTIMATING THE SPREAD OF THE IMPULSE RESPONSE FUNCTION

To estimate the spread P of the point spread function h(x, y) we suggest a simple technique
using the one-dimensional Fourier transform in place of the two-dimensional procedure. It boils
down to the evaluation of the spread of the integrand function in one variable

By (x) = f " hx, ) dy.

The Fourier transform of the integrand is the function H,(p) continued into the domain p <0 as

an even function. Clearly, the spread of function hz(x) is equal to that of the point spread function
h(x, y), as shown in Fig. 1. Accordingly, the parameter P can be determined, say, as the least
positive number satisfying the inequality

PT ©
1—j Ihz(x)lde/J lhs(x)*dx <e,

0o 0

where ¢ is a quantity characterizing the error caused by truncation of the point spread function.

EVALUATING THE DFT SPAN

An enhancement of model efficiency may be gained by taking into account the relations of the
input and output windows, i.e. the size of the information signal at the input and the constraints

hix,y)

Fig. 1. Construction to evaluate the width of the impulse response function R = PT.
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Fig. 2. EvaluationoftheleastspanofDFT:(a)thegencralcase,I=m2—m1+1;(b)m1<0,m2>M——1,
P<M; I=P+max{M—k,k,+1}; (€) m <0, my>M—1, P>M; P=max{M —k, —1,k,},
+1.

on the analysed output frame. This procedure may be adequately described by giving the
one-dimensional case:
Compute

M-1

gk= Z fmhk—m, ke[kl’ k2]’ (3)
m=0

with m¢ [0, M — 1] for f,,, and h,, =0 for |m| > P.

All the sequences involved in the DFT convolution are known to be periodic—with a period I,
the span (length) of DFT. We need this convolution to coincide with the computation of the
aperiodic convolution (3) for the output window despite the possible alien effects that might arise
when going from the series of finite length to the periodic series.

The relation of samples in the input and output series of the aperiodic convolution is shown in
Fig. 2. From Fig. 2(a) it follows that in the general case we need information about the values f,,
in the input window for me [m,, m,], with m; =k, — P and m, = k, + P. Consequently, we may
drop the values of the input sequence of f, outside this interval and assume the cyclic convolution
span to be

I=m2_m1+1=k2_’k1+2p+1- (4)

This approach precludes alien effects in the output window elements.
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An additional contraction of the DFT span can be achieved when the output window or the
size of the impulse response function is such that the input window covers the interval of nonzero
values of the f,, sequence, i.e. m; <0, m, > M — 1. If the width of the impulse response function
is small (P < M), then, observing the cyclic property of the convolution, we can allow harmless
alienation in the computation by keeping zeros at one side only, precisely where there are more
of them (Fig. 2b). In other words, we assume that

m, =0, I=P+max{M—ky, k,+1}, m,=1—1. 3

If the width of the impulse response function is so large that P> M, then to compute every
desired sample of the output sequence we need all nonzero samples of the input sequence. In this
case from Eq. (3) it follows that only a part of nonzero samples of the point spread function h,,
(for me[k, — M + 1, k,]) will suffice for the computation, the other may be equated to zero.

From the implementation standpoint it is convenient to consider a symmetric truncation of the
point spread function while recognizing some redundancy of information, that is, to assume (Fig. 2c)

P=max{M —k, —1,k,}, I=2P+1,
m; = min{0, k,}, m,=m; +1—1. 6)

The choice of an initial value m, of the input window is rather arbitrary—it is important that
the window embraces all the nonzero values of the input signal. Such an m, will affect the distribution
only of the samples of the output window in the resultant array of the cyclic convolution.

In evaluating the DFT span of the cyclic convolution and the input window one should not
overlook that efficient realization of DFT is not possible for all I. The value of I found by (4), (5)
or (6) should be increased to the nearest value allowing the construction of a fast transform algorithm.

PARTITIONING OF CONVOLUTION

For the case shown in Fig. 2(a), that is when the width of the point spread function is small
compared with the nonzero part of the input sequence, a further enhancement of efficiency may
be achieved by partitioning the convolution.

Partitioning can be effected by two ways of about the same computational complexity [3]. In
the method we take first, called overlap with summation, the input sequence of f,, is partitioned
into contiguous blocks % of length U.

Convolving each of these blocks with the h, series of length 2P + 1 results in an output series
g of length U + 2P, which overlap with the adjacent blocks in 2P samples and yield at the output
the desired samples of the g, sequence (Fig. 3a).

In the second method, called overlap with accumulation, the input sequence is divided into
overlapping blocks. The undesired samples are eliminated at the output, resulting in contiguous
blocks that form the required sequence, as shown in Fig. 3(b). This method is somewhat more
efficient than the former and therefore preferable.

An optimal size U of an overlap block can be determined by choosing the minimum computational
‘complexity of the convolution, ie. the least time consumption for complex addition and
multiplication.

For an output window size large compared with the width of the point spread function, we made
an analysis of DFT algorithms with multiple “chopping in time” [2] with respect to various bases.
This indicated that (for both one- and two-dimensional cases) an optimal block length should be
such that the span of the corresponding cyclic convolution (and DFT) should be an integer power
of two. This fact facilitates the search for an optimum and confines the class of algorithms to
straightforward DFT procedures with base 2 chopping.

USE OF HARTLY TRANSFORM

In the case when both the signal and the point spread function of the system are real-valued,
the complexity of computations and the amount of data to be processed may be further reduced
to about one half by using a real valued DFT in the form of Hartly [4].

This transformation, being essentially the sum of the real and imaginary parts of the Fourier
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Fig. 3. Schematic representation of the arrangement of blocks of a partitioned convolution (a) for the
method of overlapping with summation, and (b) for the method of overlapping with accumulation.

transform, may be used in computing the convolution provided the spectrum of at least one of the
convolute sequences is real valued. This procedure is efficient because the one-dimensional Hartly
transform can be computed through a one-dimensional DFT of half size. The Hartly transform is
more advantageous for computing a convolution than the combined DFT algorithm [5] because
in the former case the intermediate data, as well as input and output data, are real valued, whereas
the Fourier transform of a real-valued function is in general complex valued.

GENERAL SIMULATION ALGORITHM

Given the point spread function of the system and the space limited signal, the algorithm for
modeling a two-dimensional linear system becomes:

(1) Determine the dimensions of the sampled point spread function by one-dimensional inverse
DFT, or by inverse DFT in the Hartly form if the impulse response function is real valued.

(2) Compute the parameters of the cyclic convolution based on the dimensions of the (nonzero)
input data samples, size of the impulse response function and the constraints imposed on
the input sampling domain by means of (4), (5) and (6). Evaluate the most efficient span of
the transformation (Fourier or Hartly) or the optimal size of a block of partitioned convolution
for the case shown in Fig. 2(a).

(3) Perform the direct (Fourier or Hartly) transformation for the two-dimensional array of input
data, or for each block in the case of a partitioned convolution.

(4) Multiply the resultant discrete spectrum by the samples of the point spread function.

(5) Perform the inverse (Fourier or Hartly) transformation.
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(6) Obtain the desired samples of the output signal, in the case of a partitioned convolution—after
preliminary matching of the overlap blocks. ‘

The entire method of numerical modeling for continuous two-dimensional linear systems ensures
an adequate transformation of spatial signals in a computationally efficient manner.
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